Équipe MMB : Matériaux Multi échelles et Biomécanique

Différences entre les versions de « Accueil »

De Équipe MMB : Matériaux Multi échelles et Biomécanique
Aller à la navigation Aller à la recherche
Ligne 17 : Ligne 17 :
 
3- Modélisation multi échelles <br>
 
3- Modélisation multi échelles <br>
  
Sur ces trois axes, la cohérence est centrée principalement sur l'étude des effets importants de la microstructure des matériaux aux différentes échelles. Les matériaux ciblés sont certains polymères amorphes ou semi-cristallins, ou composites (polymères renforcés par des fibres de verre ou de carbone), mais aussi des matériaux biologiques (crâne, cerveau, colonne cervicale, tendon), ou des matériaux utiles pour la sécurité humaine dans les transports (casques, …).
+
Sur ces trois axes, la cohérence est centrée principalement sur l'étude des effets importants de la microstructure des matériaux aux différentes échelles. Les matériaux ciblés sont certains polymères amorphes ou semi-cristallins, ou composites (polymères renforcés par des fibres de verre ou de carbone), mais aussi des matériaux biologiques (crâne, cerveau, foie, colonne cervicale, Os, tendon), ou des matériaux utiles pour la sécurité humaine dans les transports (casques, …).
  
 
Par ailleurs, les propriétés dynamiques de ces matériaux nous intéressent spécifiquement et concernent de nombreuses applications comme les transports, la chirurgie réparatrice, l'aéronautique, et les nouveaux procédés.
 
Par ailleurs, les propriétés dynamiques de ces matériaux nous intéressent spécifiquement et concernent de nombreuses applications comme les transports, la chirurgie réparatrice, l'aéronautique, et les nouveaux procédés.
  
 
Afin de mettre en relation l'ensemble de ces activités, des liens forts sont exploités avec la biologie, la physique et la chimie des matériaux pour mieux comprendre et optimiser les propriétés de ces différents matériaux.
 
Afin de mettre en relation l'ensemble de ces activités, des liens forts sont exploités avec la biologie, la physique et la chimie des matériaux pour mieux comprendre et optimiser les propriétés de ces différents matériaux.

Version du 25 avril 2016 à 12:05

Responsables :

Pr Nadia Bahlouli : nadia.bahlouli@unistra.fr
Pr Rémy Willinger : remy.willinger@unistra.fr

Présentation

L'équipe MMB est organisée selon plusieurs thématiques de recherches orientées vers la caractérisation expérimentale et la simulation numérique du comportement des matériaux au sens large avec une focalisation particulière sur le développement, l'implémentation et la validation de nouvelles lois de comportement des matériaux étudiés.

Les thématiques développées au sein de l'équipe mettent en avant le développement des outils numériques multi-échelles et multi-physiques validés par les méthodes expérimentales. Ces couplages nous permettent de pouvoir prédire avec précision les évolutions du comportement des matériaux à microstructures complexes biologiques ou inertes.

Les activités

L'équipe se regroupe au sein des trois thématiques suivantes :

1- Biomécanique des chocs, vibrations et dynamique des matériaux
2- Caractérisation de tissus biologiques, Biomatériaux, prothèses et Mécanobiologie.
3- Modélisation multi échelles

Sur ces trois axes, la cohérence est centrée principalement sur l'étude des effets importants de la microstructure des matériaux aux différentes échelles. Les matériaux ciblés sont certains polymères amorphes ou semi-cristallins, ou composites (polymères renforcés par des fibres de verre ou de carbone), mais aussi des matériaux biologiques (crâne, cerveau, foie, colonne cervicale, Os, tendon), ou des matériaux utiles pour la sécurité humaine dans les transports (casques, …).

Par ailleurs, les propriétés dynamiques de ces matériaux nous intéressent spécifiquement et concernent de nombreuses applications comme les transports, la chirurgie réparatrice, l'aéronautique, et les nouveaux procédés.

Afin de mettre en relation l'ensemble de ces activités, des liens forts sont exploités avec la biologie, la physique et la chimie des matériaux pour mieux comprendre et optimiser les propriétés de ces différents matériaux.