Équipe MMB : Matériaux Multi échelles et Biomécanique

Degradation mechanisms under dynamic thermomechanical loadings of layered polymer parts: characterization and modeling

De Équipe MMB : Matériaux Multi échelles et Biomécanique
Révision datée du 25 avril 2014 à 10:51 par George (discussion | contributions) (Page créée avec « PhD Fellow at the Mechanical Department, Laboratory ICube, Université de Strasbourg France Ph.D. director : Nadia Bahlouli, Professeur des Université / Full Professor, ... »)
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)
Aller à la navigation Aller à la recherche

PhD Fellow at the Mechanical Department, Laboratory ICube, Université de Strasbourg France

Ph.D. director : Nadia Bahlouli, Professeur des Université / Full Professor, nadia.bahlouli@unistra.fr Laboratory : Laboratoire des Sciences de l'Ingénieur, de l'Informatique et de l'Imagerie (ICUBE) - UMR 7357 University : Université de Strasbourg.

Advertisement : - European nationality. - Under 27 years on 1st October of the year. - Master 2 or equivalent to prepare a PhD thesis (or in preparation of this degree in the year of submission of the application).

Subject : The proposed research project relates to the study of layered polymeric materials used to manufacture defense structures using rapid prototyping processes such as 3D printing. These structures are subjected to coupled and repeated mechanical and thermal chock loadings. This results in cumulated damage leading to the material failure. Polymeric materials are highly damageable and highly rate-and- temperature sensitive. Thus, establishing an approach describing the initiation, propagation and failure of polymers subjected to repeated shock loadings requires taking into account the dynamic response which is strongly dependent the material microstructure, loading rate and temperature. It is therefore essential to understand and describe the mechanisms at different scales of the layered polymer that is involved in this type of loading. These mechanisms should then be integrated in a micromechanically-based damage model. The main objective of the thesis work is to develop better understanding, via observations and measurements, of different damage and failure mechanisms under repeated chock loadings. For this, we will utilize impact testing systems that we have developed in our laboratory for the analysis of dynamic behavior of polymers: 1- Hopkinson Pressure Bar equipped with specific thermal enclosures for hot and cold tests, and 2- Drop Weight Impact Testing System. We will couple our thermomechanical experimental techniques with fast imaging and fluorescence techniques which are available in ICUBE laboratory within the imaging research team. Finally, the observed damage mechanisms under impact loading should be integrated in micromechanical approach to predict the mechanical response and failure of layered polymeric structures subjected to repeated dynamic loadings.


National and international collaborations : · INSA Lyon (Dr. Angela Madeo) · GDR AMORE (Prof. Francisco Chinesta, Centrale Nantes) · Laboratoire de bioingénierie et bioimagerie ostéo-articulaire (Prof. Hervé Petite, B2OA, Paris 7) · Groupe interdisciplinaire en biomécanique ostéoarticulaire et cardiovasculaire (Prof. Patrick Chabrand, Université Aix-Marseille) · Université La Sapienza, Rome (Prof. Francesco d’ell Isola) · Université médicale de Varsovie (Prof. Tomasz Lekszycki) · Bioingénierie et Bioimagerie Ostéo-Articulaire (Prof. Hervé Petite) · Laboratoire de Tribologie et Dynamique des Systèmes – Equipex IVTV (Prof. Thierry Hoc) · Laboratoire Matériaux Ingénierie et Science - MATEIS


References : · Chinesta, F., Ammar, A., Leygue, A. and Keunings, R., 2011, An overview of the proper generalized decomposition with applications in computational rheology, Journal of Non-Newtonian Fluid Mechanics, vol. 166, pp. 578-592. · Germain, P., 1972, Sur l’application de la méthode des puissances virtuelles en mécanique des milieux continus, Comptes Rendus de l’Académie des Sciences, vol. 274, pp. 1051-1055. · Germain, P., 1973, La méthode des puissances virtuelles en mécanique des milieux continus : théorie du second gradient, Journal de Mécanique, vol. 12 (2), pp. 235-274. · Lekszycki, T., 1999, Optimality conditions in modeling of bone adaptation phenomenon, Journal of Theoretical Applied Mechanics, vol. 37 (3), pp. 607-624. · Lekszycki, T., 2005, Functional adaptation of bone as an optimal control problem, Journal of Theoretical Applied Mechanics, vol. 43 (3), pp. 120-140. · Madeo, A., George, D., Lekszycki, T., Nierenberger, M., Rémond, Y., 2012, A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodeling, Comptes Rendus Mécanique, vol. 340, pp. 575-589. · Madeo, A., Lekszycki, T., Dell'Isola, F., 2011, A continuum model for the bio-mechanical interactions between living tissue and bioresorbable graft after bone reconstructive surgery, Comptes Rendus Mécanique, vol. 339, pp. 625-640. · Mindlin, R. D., 1964, Micro-structure in linear elasticity, Archive for Rational Mechanics and Analysis, vol. 16, pp. 51-78. · Mindlin, R. D., Eshel, N. N., 1968, On first strain-gradient theories in linear elasticity, International Journal of Solids and Structures, vol. 4, pp. 109-124. · Toupin, R. A., 1962, Elastic materials with couple-stresses, Archive for Rational Mechanics and Analysis, vol. 11, pp. 385-414.